

#### शिवम एम.एस.पी.मंडळ परभणी डॉ.बाबासाहेब आंबेडकर मराठवाडा विद्यापीठ औरंगाबाद संलग्नीत. व महाराष्ट्र शासन मान्यता प्राप्त

## जालना कॉलेज ऑफ आय टी नोंदणी क्रमांक : एन.जी.सी.२००८/(२२१/०८)/मशि-३ दि.२५ जुन २००८

खरपडी ता.जि.जालना. संपर्क - 7755999954 / 8485846999 / 9422215058

Outcome-Based Education (OBE) Attainment Report: Bachelor of Science (B.Sc.)

## Jalna College of I.T., Jalna

# Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar

Program Focus: Core Sciences (Physical, Chemical, and Mathematical)

Academic Cycle: Evaluation Cycle for 2022-23 (Illustrative Data)

Prepared by: IQAC & Science Departmental Outcome Assessment Team

### The OBE Mandate and B.Sc. Program Objectives

#### 1.1 Philosophy of Scientific Education

The B.Sc. program is built on the philosophy that scientific knowledge must be **foundational**, **experimental**, **and ethical**. The Outcome-Based Education (OBE) framework ensures that students graduate not just with theoretical knowledge but with **transferable scientific competence**, enabling them to pursue research, industry roles, or advanced studies.

#### 1.2 B.Sc. Program Outcomes (POs) and Scientific Attributes

The five Program Outcomes (POs) guide the B.Sc. curriculum, focusing heavily on research methodology and practical application:

| PO<br>No. | Program Outcome (POs)                                              | Scientific Attribute Focus      |
|-----------|--------------------------------------------------------------------|---------------------------------|
| PO1       | Develop scientific knowledge and practical laboratory skills.      | Knowledge & Hands-on Competence |
| PO2       | Apply scientific methods for research and problemsolving.          | Research Methodology            |
| PO3       | Analyze, interpret, and present scientific data effectively.       | Data Literacy & Communication   |
| PO4       | Understand ethical issues and safety standards in scientific work. | Ethics and Safety               |
| PO5       | Engage in continuous learning for scientific advancements.         | Lifelong Learning               |

## **1.3 Vertical Integration of Outcomes**

The COs in B.Sc. are progressively structured: early-semester COs focus on PO1 (Knowledge/Skills), while later-semester COs emphasize PO2 (Research) and PO3 (Data Analysis) through project work and advanced practicals.

## Course Outcomes (COs) and Assessment Mapping

We detail the COs for three representative core B.Sc. subjects (Physics, Chemistry, and Mathematics/Statistics) and their corresponding assessment mechanisms.

#### 2.1 Representative Course Outcomes (COs)

| Course                    | CO<br>No. | Course Outcomes (COs)                                                                                  | Primary PO<br>Link |
|---------------------------|-----------|--------------------------------------------------------------------------------------------------------|--------------------|
| Physics<br>(Mechanics)    | CO<br>P1  | Understand fundamental concepts of classical mechanics; apply principles to solve structured problems. | PO1, PO2           |
|                           | CO<br>P2  | Perform laboratory experiments on mechanical properties; analyze results for error and accuracy.       | PO1, PO3           |
| Chemistry<br>(Analytical) | CO<br>C1  | Perform complex volumetric and instrumental analysis with precision and accuracy.                      | PO1, PO4           |
|                           | CO<br>C2  | Interpret spectroscopic data (IR, UV) to determine the structure of unknown compounds.                 | PO2, PO3           |
| Mathematics<br>(Calculus) | CO<br>M1  | Apply differential and integral calculus tools to scientific and real-world problems.                  | PO2, PO3           |
|                           | CO<br>M2  | Use mathematical reasoning to construct proofs and solve abstract problems.                            | PO5                |

## 2.2 Assessment Mapping and Methodology

The B.Sc. evaluation places a **high weight on practical performance** to align with the POs:

| Assessment Component                                    | Target POs                                      | Weightage |
|---------------------------------------------------------|-------------------------------------------------|-----------|
| Semester-End Theory Exams (SEE)                         | PO1, PO2 (Conceptual Knowledge)                 | 40%       |
| Semester-End Practical Exams (Lab<br>Performance, Viva) | PO1, PO4 (Skills & Safety)                      | 30%       |
| Internal Assessment (CIA: Assignments, Projects, Tests) | PO2, PO3, PO5 (Research, Analysis, Application) | 30%       |

## **PO-CO Mapping Matrix: B.Sc. Core Disciplines**

The degree of correlation between COs and POs is quantified using the standard **3-point scale** (High=3, Medium=2, Low=1, None=0).

| СО       | Course                    | PO1<br>(Knowledge/Skills) | PO2<br>(Research/Method) | PO3 (Data<br>Analysis) |       | PO5<br>(Lifelong<br>Learning) |
|----------|---------------------------|---------------------------|--------------------------|------------------------|-------|-------------------------------|
| CO<br>P1 | Physics<br>(Theory)       | н (3)                     | M (2)                    | L (1)                  | -     | L (1)                         |
| CO<br>P2 | Physics<br>(Practical)    | Н (3)                     | M (2)                    | Н (3)                  | M (2) | -                             |
| CO<br>C1 | Chemistry<br>(Practical)  | Н (3)                     | L (1)                    | M (2)                  | Н (3) | L (1)                         |
| CO<br>C2 | Chemistry<br>(Theory)     | M (2)                     | н (3)                    | Н (3)                  | -     | M (2)                         |
| CO<br>M1 | Mathematics<br>(Calculus) | L (1)                     | н (3)                    | Н (3)                  | -     | M (2)                         |
| CO<br>M2 | Mathematics<br>(Abstract) | L (1)                     | M (2)                    | L (1)                  | -     | Н (3)                         |

#### **Attainment Evaluation and Model Data**

#### 4.1 Attainment Calculation Framework

The institutional target for the B.Sc. program is 65% of students scoring 65% or above in the assessment components mapped to the CO.

- 1. **CO Attainment Score:** Calculated using the weighted assessment method (Chapter 2, Section 2.2).
- 2. **PO Attainment Score:** Calculated as the weighted average of all mapped CO Attainment Scores.

#### 4.2 Model Attainment Data for Core COs (2022-23)

The following table presents illustrative attainment data derived from semester results and practical performance tracking:

| СО    | Course           | Target Met ( | %) Attainment S | core Attainment Level |
|-------|------------------|--------------|-----------------|-----------------------|
| CO P1 | Physics (Theory) | 70%          | 74%             | High (H)              |

| CO    | Course                 | Target Met (%) | Attainment Score | Attainment Level |
|-------|------------------------|----------------|------------------|------------------|
| CO P2 | Physics (Practical)    | 63%            | 68%              | Medium (M)       |
| CO C1 | Chemistry (Practical)  | 72%            | 75%              | High (H)         |
| CO C2 | Chemistry (Theory)     | 58%            | 61%              | Medium (M)       |
| CO M1 | Mathematics (Calculus) | 65%            | 70%              | High (H)         |
| со м2 | Mathematics (Abstract) | 55%            | 59%              | Medium (M)       |

#### 4.3 Derived PO Attainment Status for B.Sc. Program

By aggregating the CO attainment scores according to the mapping matrix:

| PO<br>No. | Program Outcome (POs)                             | Weighted Attainment<br>Score | Attainment<br>Level |
|-----------|---------------------------------------------------|------------------------------|---------------------|
| PO1       | Scientific Knowledge and Practical Skills         | 72.7%                        | High (H)            |
| PO2       | Apply Scientific Methods for Research             | 65.1%                        | Medium (M)          |
| PO3       | Analyze, Interpret, and Present Scientific Data   | 68.9%                        | Medium (M)          |
| PO4       | Understand Ethical Issues and Safety<br>Standards | 76.0%                        | High (H)            |
| PO5       | Engage in Continuous Learning                     | 62.8%                        | Medium (M)          |

## **Analysis and Continuous Improvement Plan (CIP)**

#### 5.1 Attainment Analysis and Program Strengths

The B.Sc. program demonstrates clear excellence in the practical and safety domains:

- PO1 (Knowledge/Skills) and PO4 (Ethics/Safety) achieved High Attainment (above 70%). This is primarily driven by rigorous laboratory protocols (CO C1) and successful theory application (CO P1). The high score for PO4 validates the emphasis on lab safety training and ethical conduct via practical exams.
- **PO3 (Data Analysis)** is approaching High Attainment (68.9%), indicating strong potential, largely supported by the mathematical application skills (CO M1).

#### **5.2 Identified Areas for Improvement**

The moderate attainment in PO2, PO3, and PO5 suggests that students need more exposure to open-ended research and communication tasks:

- 1. PO2 (Research Methodology 65.1%): The moderate score in CO C2 (Spectroscopic Interpretation) suggests a challenge in applying theoretical knowledge to real-world structural determination and independent research design.
- 2. **PO3 (Data Analysis 68.9%):** While strong in calculation, the final presentation and interpretation of data (CO P2, CO C2) need formal reinforcement.
- 3. **PO5** (Lifelong Learning 62.8%): The moderate score suggests that the abstract nature of advanced concepts (CO M2) needs better linkage to current scientific advancements.

## 5.3 Continuous Improvement Plan (CIP) for 2023-24 💥

Based on the attainment evaluation, the Science Departments have formulated the following actions:

| PO/CO<br>Targeted | Improvement Area                                  | Action Plan for 2023-24                                                                                                                                           | Assessment<br>Integration                  |
|-------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| PO2 &<br>PO3      | Research Design and<br>Scientific<br>Presentation | Introduce a <b>mandatory mini-project report</b> assessed for scientific writing, data visualization, and referencing.                                            | CIA (Project<br>Report<br>component)       |
| CO C2             | Spectroscopic<br>Interpretation                   | Integrate <b>simulated spectral analysis software</b> into practical labs to provide immediate feedback on structural determination problems.                     | Practical Exam<br>(Viva-Voce<br>Questions) |
| PO5               | Linking Abstract<br>Concepts to<br>Advancements   | Allocate dedicated seminar slots where students must present a scientific paper related to their core subject (e.g., applications of calculus in modern physics). | <b>CIA</b> (Seminar Grading)               |
| CO P2, C1         | Practical Skill<br>Consistency                    | Standardize lab manuals with clear instructions on <b>error calculation and uncertainty reporting</b> to strengthen PO3.                                          |                                            |